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Flood-Frequency Characteristics of Wisconsin Streams

By J.F. Walker and W.R. Krug

Abstract

Flood-frequency characteristics for 312 gaged sites on
Wisconsin streams are presented for recurrence intervals
of 2 to 100 years using flood-peak data collected through
water year 2000. Equations of the relations between flood-
frequency and drainage-basin characteristics were devel-
oped by multiple-regression analyses. Flood-frequency
characteristics for ungaged sites on unregulated, rural
streams can be estimated by use of these equations. The
state was divided into five areas with similar physiographic
characteristics. The most significant basin characteristics
are drainage area, main-channel slope, soil permeability,
storage, rainfall intensity, and forest cover. The standard
error of prediction for the equation for the 100-year flood
discharge ranges from 22 to 44 percent in the state. A
graphical method for estimating flood-frequency character-
istics of regulated streams was developed from the rela-
tion of discharge and drainage area. Graphs for the major
regulated streams are presented.

Introduction

Flood-frequency information is needed for the design
of bridges, culverts, highways, flood-protection structures,
and for effective flood-plain management. This study was
done in cooperation with the Wisconsin Department of
Transportation. This report is the fifth within a long-term
study of flood-frequency characteristics of Wisconsin
streams. Collectively these studies make up what is referred
to as the flood-frequency project.

Previous Work

The first report in the series (Ericson, 1961) developed
two sets of regression equations (with and without chan-
nel slope as a parameter) for several geographic areas in
the state. The second report in the series (Conger, 1971)
updated the original report by including additional flood-

peak data, refining the geographic areas, and including
snowfall as an independent variable. The next version of the
report (Conger, 1981) included updated flood-peak data,
refined the geographic areas, and added rainfall intensity

as an independent variable. The fourth incarnation of the
report (Krug and others, 1992) included updated flood-peak
data, provided further refinement of the geographic areas,
and included an evaluation of alternative land-use data

and various regionalization techniques. Other reports that
include methods for estimating flood-frequency characteris-
tics of Wisconsin streams were done by Wiitala (1965) and
Patterson and Gamble (1968). This report uses the same
geographic areas as in the previous report (Krug and others,
1992), includes additional flood-peak data, and updates

the values for snowfall and rainfall intensity. Additional
data used in this report increase the confidence in estimat-
ing techniques and supersede those published in previous
reports.

Purpose and Scope

This report includes a description of flood-frequency
characteristics of Wisconsin streams where annual peak
streamflow data have been collected, presents equations for
estimating flood-frequency characteristics at ungaged sites,
and includes a discussion of the development of the equa-
tions. Additional flood-peak data were collected at the crest-
gage stations at most of the same sites as previous studies,
with the data-collection period ending in 2000. These sta-
tions help provide a uniform distribution of sites throughout
the state and a long-term record of flood-peak data.

Because operation of continuous-record streamflow-
gaging stations is not part of the flood-frequency proj-
ect, the locations and lengths of record at these sites are
controlled by other needs. Therefore, the distribution and
lengths of record are not as uniform as at crest-gage sites.
Continuous-record flood-peak data in this study were col-
lected at 175 streamflow-gaging stations whereas the data
used by Conger (1981) were collected at 78 stations.
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Flood-Peak Data-Collection Network

Flood-peak data used in this study were collected
at 137 crest-gage stations and 175 continuous-record
streamflow-gaging stations located throughout the state
(plate 1). Only the peak stage of a flood is recorded at a
crest-stage station. The recorded maximum stage for each
year is converted to discharge by a stage-discharge relation
for each station. At continuous-record streamflow-gaging
stations, a continuous record of stream stage is recorded.
The maximum stage for the year is selected and is con-
verted to discharge by a stage-discharge relation. Stations
with at least 10 years of record located on rural streams
were included. On the basis of these criteria, 312 stations
were included in the report. Flood-peak data are available
for 104 crest-gage stations and for 108 streamflow-gag-
ing stations now operated (2000) and from 33 crest-gage
stations and 67 streamflow-gaging stations that have been
discontinued. Of the continuous-record stations, 32 are on
streams that are regulated. Sites were classified as regu-
lated based on knowledge of the flow system and hydro-
logic judgement. The 104 crest-gage stations are operated
as part of the flood-frequency project. Most of the crest
gages have been operated since the late 1950’s or early
1960’s. Several stations started to operate around 1970 in
northeastern Wisconsin when the first analysis of the data
showed the need for more data in this area. Data through
the 2000 water year were used for the analysis in this
report. Therefore, at least 28 years of flood-peak data
were used for most stations; however, about 18 years of
flood-peak data were used for some stations in the north-
eastern part of the state.

Annual peak stages and discharges for all crest-gage
stations and streamflow-gaging stations used in the study
are available by request from the Wisconsin District Office
of USGS or from the world-wide-web on the internet via
the following URL: http://waterdata.usgs.gov/wi/nwis/
peak.

Flood-Frequency Analysis

Flood-frequency analyses define the relation of flood-
peak magnitude to probability of exceedance or recur-
rence interval. Probability of exceedance is the percentage
chance that a given flood magnitude will be exceeded in
any year. Recurrence interval is the reciprocal of percent
probability of exceedance divided by 100 and is the aver-
age number of years between exceedances. For example,

a flood having a probability of exceedance of 1 percent
has a recurrence interval of 100 years. Recurrence inter-
vals imply no regularity of exceedance; a 100-year flood
might be exceeded in consecutive years or it might not be
exceeded in a 100-year period.

Flood-frequency analyses were performed at all rural
streamflow-gaging stations with a period of record equal to
or exceeding 10 years. Guidelines in Interagency Advisory
Committee on Water Data (1982)(commonly referred to as
Bulletin 17B) were used to fit logarithms of annual peak
discharges to the Pearson Type III distribution. For stations
on unregulated streams, the generalized skew from the
map in Bulletin 17B was weighted with the station skew
to give a weighted skew. Estimates of discharges at several
recurrence intervals in the range from 2 to 100 years for
each station were computed and are given in Appendix
table A-1.

Sites on the main stem of the Wisconsin River
received additional analyses. Krug and House (1980)
modeled the system of reservoirs and their operation to
simulate the flood peaks on the Wisconsin River for water
years 1915 through 1976. The flood frequencies given
for the Wisconsin River in this study (Appendix table
A-2) include the simulated peaks (Krug and House, 1980,
Appendix B) and the observed peaks for water years 1977
through 2000. These flood frequencies are considered
the most up-to-date estimates of the flood potential of the
existing system of reservoirs and their operating policies.

Regression Analysis and Flood-
Frequency Equations

Multiple-regression analysis was used to estimate the
relation between flood discharges for given frequencies
and drainage-basin characteristics for 200 selected stream-
flow-gaging stations in Wisconsin. The sites selected,
which were the same as those used by Krug and others
(1992), were rural, unregulated sites with at least 10 years
of record and known basin characteristics. The multiple



regression technique is a means of transferring flood-peak
characteristics from sites where observed data are available
to ungaged locations. The relation is presented by flood-
frequency equations.

The regression equations are used to relate the most
significant drainage-basin characteristics (independent
variables) to flood-peak characteristics (dependent vari-
ables; Q,, Q,..., Q,,). The multiple-regression model can
be expressed in the following form:

0, =0ABC...M" (1)
where
Q,  isflood magnitude, in cubic feet per
second, having a T-year recurrence
interval;
o isregression constant defined by
regression analysis;
ABC,. M are basin characteristics; and

abc,...m are regression coefficients defined

by regression analysis.

This form of the multiple-regression model is
achieved by linear regression of the logarithms of the
variables.

The principal method of regression analysis used in
the study is called generalized least squares (GLS) and
was developed by Tasker and others (1986) and Stedinger
and Tasker (1985). This method was used because of its
theoretical advantages over the ordinary least squares
(OLS) method and the conventional weighted least squares
(WLS) method.

In the OLS method, all the estimates of T-year floods
are implicitly assumed to have equal variance; that is, the
T-year flood estimate at each streamflow-gaging station
is assumed to be as accurate as the T-year flood estimates
at all other stations used in the regression, regardless of
record length and site variability. Furthermore, in the OLS
method, the concurrent flood peaks at different sites are
assumed to be uncorrelated or independently distributed.
In general, these two conditions are not met by flood-peak
records. The accuracy of the T-year flood estimates varies
with the length of record and variability of the annual peak
discharges at each site. Many concurrent annual floods in
an area are cross-correlated because the stations in the area
are subject to similar weather systems.

In the GLS method, the variable accuracy of the
T-year flood estimates and the cross-correlation between
stations are considered. With this method, information is
provided for analyzing the network of streamflow-gaging
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stations and crest gages. This network analysis capability
may prove to be useful in future studies.

Drainage-Basin Characteristics

The drainage-basin characteristics determined by
the multiple-regression analyses to be significant were
drainage area, main-channel slope, storage, forest cover,
25-year precipitation index, mean annual snowfall, and
soil permeability. The characteristics used in the regression
equations are listed in Appendix table A-2 at the back of
this report for each station. They are defined as follows:

1. Drainage area (A), in square miles, is the area con-

tributing directly to surface runoff. This area can be
planimetered from topographic maps or can be taken
directly for some sites from the report on drainage
ares in Wisconsin by Henrich and Daniel (1983).
If the drainage area is taken from the report by
Henrich and Daniel, any area not contributing
directly to surface runoff should be subtracted
from the total drainage area.

2. Main-channel slope (S), in feet per mile, is the slope
of the stream between points that are 10 percent and
85 percent of the distance along the channel from the
streamflow-gaging station to the basin divide, deter-
mined from topographic maps.

3. Storage (ST), expressed as a percentage of the
drainage area, includes lakes, ponds, and wetlands
determined from USGS maps and Soil Conservation
Service data. A constant of 1 percent is added to stor-
age to obtain ST (to avoid zero values in the regres-
sion equations).

4. Forest cover (FOR) is expressed as a percentage of
the drainage area shown on USGS maps, determined
by the grid method, or is data from the Soil Conser-
vation Service. A constant of 1 percent is added to
forest cover to obtain FOR (to avoid zero values in
the regression equations).

5. The 25-year precipitation index (/,;) is computed by
subtracting 4.2 from the 25-year, 24-hour rainfall,
expressed in inches (Huff and Angel, 1992). The
maximum 25-year, 24-hour rainfall has a recurrence
interval of 25 years. Precipitation indices were com-
puted for recurrence intervals of 2-, 10-, 25-, 50- and
100-years. The 25-year recurrence interval subse-
quently proved to be the best precipitation index
for predicting the selected recurrence-interval flood
discharges. The 25-year, 24-hour rainfall amounts for
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the 9 climatic sections in Wisconsin (Huff and Angel,
1992) are shown in figure 1. Values of /,; were deter-
mined at each streamflow-gaging station.

6. Mean annual snowfall (SN) for 1961 through 1990, in
inches, is determined from climate data processed by
the Spatial Climate Analysis Service at Oregon State
University (Daly and others, 2000) and is shown in
figure 2. SN is interpolated from the contours for the
location of the streamflow-gaging station.

7. Soil permeability (SP), in inches per hour, is based on
the least-permeable soil horizon in the soil column.
The median rate is used for each range of soil perme-
ability. Ranges of soil permeability were obtained
from a soils table published by the U.S. Department
of Agriculture, Soil Conservation Service (1964)
and overlaid on a soils map of Wisconsin (Hole and
others, 1968). The weighted-average soil permeabil-
ity (SP) is shown on plate 2. A grid is printed on the
back of plate 2 to facilitate estimating the percent of
the basin in each soil-permeability range.

Flood-Frequency Areas in Wisconsin

The state was divided into five flood-frequency areas
by Conger (1981). Several boundaries between areas were
adjusted in north-central Wisconsin on the basis of physi-
cal characteristics (Krug and others, 1992) and residuals
from the regression equations when applied to particular
sites (fig. 3 and pl. 1).

The five-area arrangement of the state is useful in
reducing the errors in the regression equations. Different
basin characteristics are significant in estimating the flood
frequency in the various areas. For example, soil permea-
bility is not a significant variable in flood-frequency equa-
tions for the southern part of the state (areas 1 and 5), but
it is significant in the central and northern parts of the state
(areas 2, 3 and 4). Note that the driftless area is contained
almost entirely in area 1 (plate 1 and fig. 3).

Flood-Frequency Equations and Accuracy
Evaluation

For this study, a combination of OLS and GLS regres-
sions was used to determine the best-fit regression equa-
tions for each flood-frequency area (fig. 3). A stepwise
OLS procedure was used as a screening tool to determine
the suite of variables that best predicted the T-year flood
for each area. The stepwise procedure selects a subset of
variables from a group of candidate basin characteristics

(as described in the previous section) beginning with the
variable that explains the most variability in the dependent
variable, and continues with each successive variable that
explains the most remaining variability given the effects of
the variables already chosen. A variable was selected when
its coefficient was determined to be significantly different
from zero at the 5-percent level (significance level less
than 0.05).

To facilitate comparison of various regressions, the
standard error of estimate was used (a measure of the
error in the use of regression equations to predict T-year
floods at sites used in the regression analysis). Because the
regression equations were computed using a logarithmic
transformation of the dependent and independent variables,
the standard error in log space was used to determine
confidence intervals for predictions of the logarithm of a
particular T-year discharge. The true value of the log of
the T-year flood will be within plus or minus one standard
error of the regression estimate at about two-thirds of the
sites. Because of the nonlinear nature of the logarithmic
transformation, the resulting confidence intervals trans-
formed to actual discharges are not symmetrical. For
comparison purposes, an “equivalent” standard error as a
percent of predicted discharge was computed as follows:

— 10OSE_ 7()-SE
ESE = 10°6-10 )
2
where
ESE is the equivalent standard error in
percent of predicted discharge, and

SE  is the standard error of the logarithm of
discharge.

Note that the ESE essentially results in a confidence inter-
val that has the same width as the true confidence interval
for two-thirds of the predicted values; however, the upper
and lower bounds computed with the ESE will not be cor-
rect because of the asymmetry of the confidence intervals.
For most areas, the stepwise procedure results in a
slightly different set of independent variables for each
of the T-year floods (2-, 5-, 10-, 25-, 50- and 100-year).
To maintain consistency, a common set of variables was
chosen to predict each of the T-year floods in a particular
area; in general, the set of variables explaining the most
variability of the higher recurrence interval floods (50-
and 100-year) was chosen. This set of variables was then
used to estimate the regressions using the GLS procedure.
Selecting a set of variables that deviates from the stepwise
results will produce a somewhat diminished accuracy of
prediction for the regression. To illustrate the differences
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in model accuracy, the estimated standard errors in log
space (approximated by the model error) and an equiva-
lent standard error of estimate in percent were determined
for three separate regressions: (1) the best set of variables
using OLS stepwise estimation, (2) a common set of vari-
ables using OLS regression; and (3) a common set of vari-
ables using GLS regression (table 1). For the most part, the
increase in standard error for the common set of variables
is relatively small, and in some cases is compensated for
by the improvements afforded by the GLS procedure.

The flood-frequency equations developed for streams
in Wisconsin, along with the standard error of estimate in
log space and equivalent standard error of estimate in per-
cent are presented in table 2. The equivalent standard error
of estimate is shown for comparison with similar data pub-
lished in previous reports (Conger, 1971 and 1981; Krug
and others, 1992); however, it is computed differently
in this study and the comparison is not exact. The stan-
dard error of estimate for the regression equations for the
100-year flood in the Conger (1971) report ranged from
37 to 41 percent. The comparable range of standard error
of prediction was 35 to 40 percent in the Conger (1981)
report. The range of standard error of prediction for the
100-year flood was 22 to 33 percent in the Krug and others
(1992) report. The range of standard error of prediction for
the 100-year flood in table 3 is 22 to 44 percent.

The biggest discrepancy between the equivalent
standard errors in the previous report and this report occur
for the most part in areas 1 and 5 (fig. 3), which consti-
tute a large portion of the driftless area. Recent evidence
indicates that floods in the driftless area of the state have
been decreasing over time (Gebert and Krug, 1996). The
issue of stationarity in the record is beyond the scope of
this study; however, it is a likely topic to be considered in
the next revision of the regression equations.

The regression equations are valid for streams without
significant regulation. For the purposed of this report, a
dam on a stream or river does not constitute regulation
unless the dam is used to control the flow during a flood.

The regression equations and the associated accuracy
are considered valid only within the area for which they
were developed and only for basin-characteristic values
that are within the range used to calculate the regression
equations. Flood estimates can be made using basin
characteristics outside the range of values from which
the equations were derived, but it is not possible to esti-
mate the error in those values. The ranges of the basin
characteristics of the streamflow-gaging stations used
in the regression analysis are summarized in table 3.

Application of Estimation
Techniques

The estimation techniques in this report can be
applied to four types of rural sites. The first case is where
the site is at a streamflow-gaging station; for this case, a
weighted estimate is calculated based on the gaging record
and the appropriate regression equation. The second case
is where the site is near a streamflow-gaging station; for
this case, the discharge from the appropriate regression
equation is adjusted using information from the station.
The third case is where there is no streamflow-gaging sta-
tion on the stream; for this case, the appropriate regression
equation is applied directly. The fourth case is where the
site is on a regulated stream; for this case, the discharge
is estimated based on drainage area and the appropriate
relation for the particular regulated stream (figs. 4-7). A
detailed description for applying each technique is given in
the examples that follow. To estimate flood frequencies for
urban streams, the reader is referred to Conger (1986).

Sites at Streamflow-Gaging Stations

Flood-frequency characteristics of sites at stream-
flow-gaging stations can be estimated from the station
streamflow record and by the regression equations. The
two methods can be considered independent when a large
number of sites were used to develop the regression equa-
tions. This is because the influence of a given station on
determining the regression equations is roughly inversely
proportional to the number of stations used to determine
the equations. When independent flood-frequency esti-
mates are available, the Interagency Committee Advisory
Committee on Water Data (1982, Appendix 8) recom-
mends that the weighted average of the estimates be used
as the best estimate of the flow frequency. If the estimates
are weighted in inverse proportion to their variances, the
variance of the weighted average will be less than the
variance of either of the independent estimates. Flood-fre-
quency characteristics estimated from flood-peak data are
listed in Appendix table A-1.
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Table 1. Comparison of regression results for ordinary least squares (OLS) and generalized least squares (GLS)

[SE, standard error of estimate in log units; ESE, equivalent standard error of estimate in percent; Best, results using stepwise OLS regression; Common,
results using OLS and a common set of independent variables; Qn, the n-year recurrence interval flood. Flood frequency areas are shown in figure 3.]

Flood OLS SE GLS SE OLS ESE GLS ESE
discharge Best Common Common Best Common  Common
Area 1
Q, 0.1867 0.1867 0.1803 44 44 43
Q .1692 1787 .1709 40 42 40
Qy 1591 1746 .1631 37 41 38
Q,. 1852 1852 1691 44 44 40
Q, 1690 1963 1764 40 47 42
Qu 1777 2090 1855 0 50 44
Area 2
Q, 1123 1182 1091 26 28 25
Q, A117 1207 .1086 26 28 25
Qy 1157 1253 .1086 27 29 25
Q,, 1233 1327 .1100 29 31 26
Q,, .1300 1387 1118 30 32 26
Qo0 .1380 1458 1153 32 34 27
Area 3
Q, 1569 .1626 .1591 37 38 37
Q .1489 1518 .1470 35 36 34
Qy .1495 1515 .1449 35 36 34
Q, 1522 1525 .1439 36 36 34
Q, 1547 1547 1446 36 36 34
Qu 1580 1581 1466 37 37 34
Area 4
Q, .1305 1305 1233 31 31 29
Q, 1177 1238 1131 27 29 26
Qy 1153 1213 .1063 27 28 25
Q,, 1197 1197 .0995 28 28 23
Q,, 1203 1203 .0964 28 28 22
(O 1226 1226 .0954 29 29 22
Area 5
Q, .1069 1248 1179 25 29 27
Q 1113 1214 1127 26 28 26
Qy 1306 1306 .1196 31 31 28
Q. 1494 1494 1349 35 35 32
Q,, .1655 .1655 .1490 39 39 35
Q 1821 1821 1637 43 43 39
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Table 2. Flood-frequency equations for streams in Wisconsin

[A, contributing drainage area in square miles; S, main-channel slope in feet per mile; L, 25-year, 24-hour precipitation intensity, in inches minus 4.2;
ST, storage, in percent of basin area plus 1.0; SP, soil permeability of the least-permeable soil horizon in inches per hour; SN, mean annual snowfall for
1961 through 1990 in inches; FOR, forest cover in percent of basin area plus 1; Q,, peak flood discharge in cubic feet per second, with an n-year recur-
rence interval; SE, standard error of estimate of regression, in log units; ESE, equivalent standard error of estimate, in percent. Flood frequency areas are
shown in figure 3.]

Best-fit equation SE ESE Eq. no.
Area 1 (39 stations)
0, =  99.9Avx FOR®>+ 7% 0.1803 43 1-1
0, = 190.0A°% FORO [ 3% 1709 40 1-2
0, = 350A% § 0463 FOR™2 [ o% 1631 38 1-3
0, = 381A%%° 50518 FOR™ [, 71 1691 40 1-4
0, = Al4A o545 FOR™ [ 7% 1764 42 1-5
O, =  442A% §os7 FOR032 [ 7% 1855 44 1-6
Area 2 (36 stations)
0, = 13.0 AO884 Sp 0630 §0-382 .1091 25 2-1
0, = 15.4 A% Sp 0682 § 0486 .1086 25 2-2
0, = 16340 SP-0710 o3 1086 25 2-3
0, = 17342 SP-0740 o0 1100 26 2-4
0, = 17.9 A%9» Sp-078 § 0636 1118 26 2-5
0, = 1834 SP-077s 50469 1153 27 2-6
Area 3 (57 stations)
0, = 3654 Sp-osis ST-0153 1,002 1591 37 3-1
0, = 6L6A SP-06 ST Lo 1470 34 32
0, = 80.6A" SPp-o713 ST-0180 1,013 1449 34 33
0, = 107.0 A% Sp-074 ST-0204 1250‘]36 .1439 34 3-4
0, = 127.04%" Sp-o7el ST0215 1,013 1446 34 3-5
0, = 1490488 SP0T3 ST 1,01 1466 34 3-6
Area 4 (40 stations)
0, = 2.69 A0864 ST-0-2% §0279 Sp0230 SN 0490 1233 29 4-1
0, = 6.76 A8 ST-0-28 §0303 Sp 0259 SN 0370 1131 26 4-2
0, = 9744 ST o2 SP0255 G032 1063 25 4-3
0, = 13.7 A*8%6 ST-020 §0342 Sp-0-246 SN 029 .0995 23 4-4
0, = 16.6 A*87 ST023 §0357 Sp-0-238 SN 0281 .0964 22 4-5
0, = 19445 ST0% goan SP029 gGN020 0954 22 4-6
Area 5 (28 stations)
0, = 9.58 A%%8! ST02%3 §o416 1179 27 5-1
0, = 15.1 A2 ST-038 0438 1127 26 5-2
0, = 189A"" ST0385 50447 1196 28 53
0., = 23.6 A® ST-0408 § 0457 1349 32 5-4
0, = 2704 ST0420 §o4e3 1490 35 5-5
(0] = 30.6 A6 ST-043%0 § 0467 1637 39 5-6



Example 1: Determine the 100-year flood discharge for
the Jump River at Sheldon (station number 05362000).

1. Locate the data in Appendix table A-1 by station
number (05362000).

2. The 100-year flood discharge for Jump River is
0,,, = 25,000 ft'/s.

The flood- frequency estimates presented in this
report were based on the common logarithms of dis-
charge. Therefore the weighting should be done with the
logarithms of the flood-frequency estimates, and the best
estimate is the antilogarithm of the weighted average. The
flood-frequency estimates in Appendix tables A-1 and
A-2 are essentially independent and, therefore, could be
combined by this procedure to get an improved estimate at
each site.

The appropriate equation (Interagency Committee
Advisory Committee on Water Data, 1982) is

xVy +yV,
7= —— 3)
V.+V
where
xandy are two independent estimates of a
flood-frequency characteristic,
V_and Vy are their respective variances, and

Z is the weighted estimate of the flood-
frequency characteristic.

In the example of the Jump River at Sheldon,

x =log (25,000) =4.398  from table A-1
V. =(0.0435) =0.00189 from table A-1
y =1log(41,100) =4.614 from table A-2
Vy =(0.1153)? =0.0133 from table 2, eq. 2-6.

(4.398)(0.0133) + (4.614)(0.00189)

| _ “4)
08(Q,q) 0.0133 + 0.00189

0.0585 + 0.00872 )
logQu) == oo = 4422

Q,y = 26,400 ft'/s (©6)

Application of Estimation Techniques 1"

Table 3.
analysis

Ranges of basin characteristics used in regression

[mi?, square miles; ft/mi, feet per mile; in., inches; in/hr, inches per hour.
Flood-frequency areas are shown in figure 3.]

Basin characteristic Minimum Median  Maximum
Area 1 (39 stations)
Drainage area (mi?) 0.28 25.0 2,120
Main-channel slope 2.27 27.3 270
(ft/mi)
Forested area (percent) .00 26.6 56.9
25-year, 24-hour 5.18 5.28 5.29
precipitation (in.)
Area 2 (36 stations)
Drainage area (mi?) .56 27.4 1,760
Soil permeability .20 91 2.88
(in/hr)
Main-channel slope 3.65 15.56 96
(ft/mi)
Area 3 (57 stations)
Drainage area (mi?) 1.00 22 2,240
Soil permeability 12 1.81 8.46
(in/hr)
Storage (percent) .00 15.5 39.7
25-year, 24-hour 4.24 4.38 5.29
precipitation (in.)
Area 4 (40 stations)
Drainage area (mi?) .66 35.0 696
Storage (percent) .00 9.40 52.4
Main-channel slope 1.08 11.6 204
(ft/mi)
Soil permeability 12 .82 4.68
(in/hr)
Mean annual snowfall 344 48.3 172
(in.)
Area 5 (28 stations)
Drainage area (mi?) 1.32 18.9 3,340
Storage (percent) .00 1.65 154
Main-channel slope 74 12.85 74.2
(ft/mi)
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Sites on Streams near Streamflow-Gaging
Stations

Flood-frequency characteristics at sites near a
streamflow-gaging station on the same stream are deter-
mined using a combination of the station’s flood frequency
characteristics and the characteristics determined by the
regression equations. The procedure is applicable for sites
that have a drainage area between 50 and 150 percent
of the drainage area of the station. The suitability of the
flood-frequency characteristics should be determined by
comparing them with flood-frequency characteristics at
the station. The following procedure was used by Curtis
(1987) for streams in Illinois based on work by Sauer
(1974). The procedure is as follows:

First, the ratio r” is defined by

g e 8
where

r’ is the adjustment ratio,

0, is a flood-frequency characteristic
determined at the station,

Qg is a flood-frequency characteristic
determined for the station by the
appropriate multiple-regression
equation (table 2),

Ag is drainage area of the gaged site, and

A is drainage area of the ungaged site.

u

The adjusted flood-frequency characteristic for the
ungaged site (Q, ) is computed by the equation

0,=10, (8)

where
Qu is a flood-frequency characteristic
determined for the ungaged site by the
appropriate multiple-regression equation.

If the difference in drainage area between the
ungaged site and the gaged site is more than 50 percent,
equations 7 and 8 should not be used. In this case, the
appropriate multiple-regression equation from table 2
should be used without adjustment but should be compared
to the flood-frequency characteristic of the station on
the stream for suitability. If the drainage area crosses the
boundary of two flood-frequency areas, compute the flood
frequency using equations from both areas. Compute the
final flood-frequency estimates as the weighted average of

Summary 13

the two estimates weighted by the proportion of drainage
area in each of the flood-frequency areas.

Example 2: Determine the 100-year flood of Black
Earth Creek at U.S. Highway 14, which is 2 miles down-
stream from the station Black Earth Creek at Black Earth
(05406500).

First, equation 1-6 from table 2 is used to determine
the 100-year flood estimate at the gaged site:

Q]OO =442 A0A893S0.571F0R -043121;56 (1-6)

The drainage-basin characteristics at the gaged site are
given in Appendix table A-2:

A (contributing drainage area) = 42.8 mi?,

S (main channel slope) =9.42 ft/mi,

FOR (forest cover in percent

of basin area plus 1) =21.8 + 1 =22.8, and

L, (25-year, 24-hour

precipitation index) = 5.18 — 4.2 = 0.98 inches.

Substituting into equation 1-6,

A

O =44.2 (42.8)°9%(9.42)0571(22.8) 0312 (0.98) 5
= 1,470 ft’/s 9)

QAu at the Black Earth Creek at U.S. Highway 14
can be determined at the ungaged site by use of the same
eq. 1-6 and the procedure that was used to determine Qg
at the station, as follows:

0.893 ~0.571 -0.312 4 7.56
Q,,,= 442" 5" FOR "I,

5

(1-6, table 2)

The drainage-basin characteristics at this site were deter-

mined to be:
A =45.0 mi* (2.8 mi? non-contributing area),
S =8.81 ft/mi,

FOR =21.9+1 =22.9, and
I, =5.18-42 =0.98.

Substituting into equation 1-6,

0, = 44.2 (45.0)°%3(8.81)"571(22.9) 0312 (0.98) 75
= 1,480 ft/s (10)
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From Appendix table A-2, the 100-year flood at the
gaging station Q,) is 1,650 ft*/s. Next, Equation 7 is used
to determine the adjustment factor (7”):

A -A
2 '_')%1) 0
0, | osa_Jlo,
e 1,650 |42.8 —47.8] 1,650_1 —1.094
1,470 0.5-42.8 1,470 (11)

Finally, Equation 8 is used to compute the adjusted
discharge at the ungaged site, thus

0, =r0 =1094+1480=1,620fc/s (12)

If the drainage area crosses the boundary of two
flood-frequency areas, compute the flood frequency using
equations from both areas. Compute the final flood-fre-
quency estimates as the weighted average of the two esti-
mates weighted by the proportion of drainage area in each
of the flood-frequency areas.

Sites on Streams Without Streamflow-Gaging
Stations

Flood-frequency characteristics at sites on ungaged
streams are calculated using equations 1-1 through 5-6
from table 2.

Example 3: Determine the 100-year discharge for Tappen
Coulee at Blair. This site is in area 1; therefore, use equa-
tion 1-6 from table 2:

0.893 0.571 -0.312 4 7.56

Q,,=442A7"SFOR L, (1-6)
1. The drainage area A was determined to be 4.48 mi?
from Henrich and Daniel (1983).

2. The main channel slope (S) was computed from U.S.
Geological Survey topographic maps as follows:

(a) The river or coulee length was measured from the
site to the basin divide. For forked streams, the fork
with the larger drainage area is followed.

(b) The elevations at points that are 10 and 85 percent
of the total stream length from the site are then deter-
mined.

(c) Next, the difference in elevation between the

sites is determined and is divided by the distance, in
miles, between the points. By use of the appropriate
quadrangle maps (Blair, 1968, 1:24,000; Hegg, 1969,

1:24,000), the total length of the stream for this site
was determined to be 5.20 mi. The elevation at the
10-percent point is 847.6 ft and at the 85-percent
point is 963.0 ft. The main channel slope is

_963.0-847.6

530 =29.6 ft/mi (13)

3. The percent forest cover was determined to be
45.8 percent based on land use/land coverage in the
WISCLAN database (Reese and others, 2002) and
a digitized drainage-basin outline after Henrich and
Daniel (1983).

4. The precipitation intensity index (/,,) was determined
by locating the site in figure 1 and determining the
25-year, 24-hour precipitation intensity, then sub-
tracting 4.2. The 25-year precipitation intensity for
climatic section 4 is 5.28; therefore 1,
is 1.08.

5. Substituting these values into equation 1-6:

0,,,= 44.2(4.48)"7(29.6)"”" (46.8)"*"*(1.08) "
=629 14

If the drainage area crosses the boundary of two
flood-frequency areas, compute the flood frequency using
equations from both areas. Compute the final flood-fre-
quency estimates as the weighted average of the two esti-
mates weighted by the proportion of drainage area in each
of the flood-frequency areas.

Sites on Regulated Streams

Flood-frequency characteristics at ungaged sites on
regulated streams are estimated using the flood-frequency
characteristics at streamflow-gaging stations on the
regulated streams and adjusting the characteristics accord-
ing to the relation of drainage area and discharge. Graphs
showing the peak discharge of floods plotted at selected
recurrence intervals against drainage area are presented in
figures 4-7 for the following major regulated streams in
Wisconsin:

a. Menominee River between Wisconsin and Michigan
(fig. 4),
b. Wisconsin River from the mouth to Rainbow

Reservoir near Lake Tomahawk (fig. 5),

c. Chippewa River from the mouth to Lake Chippewa
in Sawyer County (fig. 6), and



d. Flambeau River from its mouth to Flambeau Flowage
northeast of Park Falls (fig. 7).

Storage reservoirs in these basins can significantly
change the flood-frequency characteristics at streamflow-
gaging stations. Flood-frequency analyses were performed
for stations along the main stems for the period of record
beginning with the completion of the last large storage
reservoir in each basin for the Menominee, Chippewa,
and Flambeau Rivers. These analyses represent flood-fre-
quency characteristics in 2000. Completion dates for the
last large storage reservoir for each basin follow: 1941 for
the Menominee River; 1926 for the Flambeau River; and
1923 for the Chippewa River. For the Wisconsin River,
flood peaks prior to 1976 were simulated using a model of
the river system (Krug and House, 1980). Observed flood
peaks were used after 1976.

Summary and Conclusions

Equations, tables, and graphs presented in this report
provide a means for estimating flood-frequency charac-
teristics for rural streams in Wisconsin. Flood-frequency
characteristics were determined at 104 crest-stage stations,
at 33 discontinued crest-stage stations, at 108 continu-
ous streamflow-gaging stations, and at 67 discontinued
streamflow-gaging stations using the log-Pearson Type III
frequency distribution. The flood-frequency characteris-
tics at 96 crest-gage stations, 29 discontinued crest-gage
stations, 48 streamflow-gaging stations, and 27 discontin-
ued streamflow-gaging stations, and their drainage-basin
characteristics, were used in a multiple-regression analysis
to derive equations for estimating flood-frequency charac-
teristics. The generalized least-square procedure was used
in the multiple-regression analyses. The state was divided
into five areas with similar physiographic characteristics.

For the 100-year flood discharge, the standard
errors of prediction in three of the five areas were rela-
tively unchanged from those reported in Krug and others
(1992). The most notable discrepancies were in areas 1
and 5 (southwestern and south-central Wisconsin) where
the standard error of estimate increased from 26 and 22
percent to 44 and 39 percent, respectively, for the 100-year
floods. This discrepancy may be due to nonstationarity
in the discharge record coupled with the use of relatively
recent snowfall and precipitation data. The standard
error of estimate for the 100-year flood equation ranged
statewide from 22 percent for streams in the eastern area to
44 percent for streams in the southwestern area. Drain-
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age area, channel slope, soil permeability, storage, rainfall
intensity, and forest cover are the most significant drain-
age-basin characteristics for estimating flood-frequency
characteristics.

Graphical relations of flood-frequency characteristics
and drainage area are presented for the regulated Menomi-
nee, Flambeau, Chippewa, and Wisconsin Rivers. The rela-
tions were developed by use of data at stations for periods
after the last large storage reservoir was constructed in
each basin. For the Wisconsin River, the source of simu-
lated flood discharges through 1976 was a report by Krug
and House (1980). Observed flood discharges were used
after 1976.
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